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[1] This study uses a Bayesian approach to merge ensemble seasonal climate forecasts
generated by multiple climate models for better probabilistic and deterministic
forecasting. Within the Bayesian framework, the climatological distribution of the
variable of interest serves as the prior, and the likelihood function is developed with a
weighted linear regression between the climate model hindcasts and the corresponding
observations. The resulting posterior distribution is the merged forecast, which
represents our best estimate of the variable, including its mean and variance, given
the current model forecast and knowledge about the model’s performance. The handling
of multimodel climate forecasts and nonnormal distributed variables, such as
precipitation, are two important extensions toward the application of the Bayesian
merging approach for seasonal hydrological predictions. Two examples are presented as
follows: seasonal forecast of sea surface temperature over equatorial Pacific and
precipitation forecast over the Ohio River basin. Cross validation of these forecasts
shows smaller root mean square error and smaller ranked probability score for the
merged forecast as compared with raw forecasts from climate models and the
climatological forecast, indicating an improvement in both deterministic and
probabilistic forecast skills. Therefore there is great potential to apply this method

to seasonal hydrological forecasting.
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1. Introduction

[2] Seasonal climate predictions using comprehensive
coupled ocean-atmosphere-land models are now being
made routinely at a number of operational weather and
climate centers around the world, such as the National
Centers for Environmental Prediction (NCEP) [Kanamitsu
et al., 2002], International Research Institute for Climate
Prediction (IRI) at Columbia University [Barnston et al.,
2003], and the European Centre for Medium-Range Weather
Forecast [Palmer et al., 2000, 2004]. This development and
capability is primarily attributed to advances in understand-
ing the interaction between the atmosphere, ocean, and land
at seasonal-to-interannual timescales [Koster et al., 2000] as
well as tremendous increases in computing power. Practically
speaking, improvements in seasonal predictability are to a
large extent because of a better understanding of the role
of sea surface temperature (SST) variability [for example,
El Nino, Southern Oscillation (ENSO)] in the climate
system and advances in its observation, while recognizing
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that land surface conditions do contribute to improvements
in predictions over some regions of the world [Koster et al.,
2000].

[3] Seasonal predictions of climate variables, especially
precipitation and air temperature, have a great value to
society [Jones et al., 2000; Schneider and Garbrecht,
2003; Everinghama et al., 2002; Palmer, 2002] and are
fundamental to the Coordinated Observation and Prediction
of the Earth System activity of the World Climate Research
Program. Seasonal predictions of precipitation, and in turn
predictions of soil moisture and streamflow, can have great
values to our society. Agriculture, water resource manage-
ment, and energy and transportation sectors are a few
among many others that will benefit through appropriate
planning given useful seasonal predictions. However, the
current skill of seasonal hydrological forecasts is still
limited and far from meeting the society’s needs. A research
interest and priority therefore is to understand the predict-
ability of the climate system at seasonal-to-interannual
timescales and to improve seasonal forecast skills. The path
that leads to increasing forecast skill involves improving the
climate model physics, resolution, parameterizations for
unresolved processes, etc., which are constantly carried out
at climate modeling centers. One area which has received
less attention is the development of statistical postpro-
cessing methods to achieve the best possible prediction with
the current models [Coelho et al., 2004; Stephenson et al.,
2005]. This paper contributes to addressing this need.
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[4] One major advance in statistical postprocessing tech-
niques is the development of the multimodel super-ensemble
concept [Krishnamurti et al., 2000]. Because of the stochas-
tic nature of the climate system, seasonal forecasts would be
better expressed in a probabilistic manner. Although one
can provide a single-valued (deterministic) forecast, infor-
mation about uncertainties should always be included in
the forecast. The basic method for addressing forecast
uncertainties from deterministic dynamic climate models
is through analyzing their ensemble members. Various
ensemble generation methods have been used in opera-
tional numerical weather forecasts and in many climate
studies, including the lagged average forecasting method
[Hoffman and Kalnay, 1983] and the breeding method
[Toth and Kalnay, 1993]. These methods attempt to incor-
porate the uncertainties in the initial conditions of the
climate system. However, there are more uncertainties in
the system than the initial conditions, as there are uncertain-
ties due to model formulations. Numerical representations of
the climate system have uncertainties when the partial
differential equations are expressed and solved over finite
grids. Parameterizations used in the models have uncertain-
ties as they try to simulate processes that cannot be fully
resolved. These uncertainties can propagate and affect the
solution of the system across the entire spectrum of scales. As
aresult, each climate model tends to have its own climatology
that may not reflect the real climate system, and each model
also has a forecast skill that varies geographically and with
lead time and season. To include all the uncertainties and
represent them in the forecast, Krishnamurti et al. [2000]
proposed a multimodel super-ensemble approach that utilizes
multiple models for ensemble forecasts and pools all the
ensemble members to form a “super-ensemble.” They found
that the estimates using the super-ensemble outperform all
model forecasts for multiseasonal, medium-range weather
and hurricane forecasts. Since then, the multimodel super-
ensemble concept has received increased attention and has
been used in many applications. For instance, Krishnamurti
et al. [2001] applied the multimodel super-ensemble concept
on real-time precipitation forecast using Tropical Rainfall
Measuring Mission and SSM/I products; Kumar et al. [2003]
constructed a multimodel super-ensemble for forecasting
tropical cyclones over the Pacific Ocean based on the opera-
tional forecast data set; Williford et al. [2003] studied the
Atlantic hurricane forecast for the year 1999 using the super-
ensemble method. The super-ensemble concept has also been
implemented in operational seasonal forecasts at different
research and operational institutes. Barnston et al. [2003]
reported the progress on multimodel ensembling in seasonal
forecasting at IRI, and Palmer et al. [2004] summarized the
development of the European multimodel ensemble system
for seasonal-to-interannual prediction (a.k.a. DEMETER).
All these applications have shown the potential of the multi-
model approach in improving various forecasts.

[5] While data-based statistical models are developed for
long-lead prediction of ENSO [Berliner et al., 2000], various
studies have also been carried out to improve statistical
techniques for combining the super-ensembles from dynamic
models. Among many others, Rajagopalan et al. [2002] used
a Bayesian method to optimally combine global seasonal
precipitation and temperature forecasts in two different
seasons, and they found a general improvement in forecast
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skills over individual models. Robertson et al. [2004] made
improvements to the Bayesian scheme of Rajagopalan et al.
by reducing the dimensionality of the numerical optimiza-
tion. They achieved increases in cross-validated forecast skill
when combining six atmospheric general circulation model
seasonal hindcast ensembles with the revised scheme. Yun et
al. [2003] introduced a technique for improvement of the
long-term forecast skill of the multimodel super-ensemble
based on singular value decomposition. Recently, Coelho et
al. [2004] presented a Bayesian approach for making deter-
ministic forecast of ENSO (SST Niflo-3.4 index) based on the
dynamical climate forecast from the European Union’s (EU)
DEMETER project and an empirical statistical model fore-
cast. They were able to show that the combined forecast,
using their approach, increases the skill score and provides a
reliable estimate of the forecast uncertainty.

[6] In early 2004, the authors started developing a
Bayesian merging method for seasonal hydrological predic-
tions, with a focus over the eastern U.S. The developed
method has similarities to the approach presented in the
work of Coelho et al. [2004] but developed independently.
The next section presents the Bayesian merging methodo-
logy. The major differences in the approach in this paper
and that of Coelho et al. is the development of the
Bayesian posterior distribution, weighted to reflect the
individual model skill, from which multimodel super-
ensembles can be generated. The second difference is our
ability to handle climate variables from nonnormal distri-
butions within the multimodel framework. We apply the
Bayesian multimodel forecasting system to two different
applications: the prediction of monthly sea surface temper-
ature over the equatorial Pacific and the prediction of
monthly precipitation over the Ohio River basin. These
are described in sections 3 and 4. The last section provides
discussion and conclusions.

2. Methodology
2.1. Bayes’ Theorem

[7] Bayes’ theorem provides an approach to update the
probability distribution of a variable based on information
newly available by calculating the conditional distribution
of the variable given this new information. The updated
(conditional) probability distribution reflects the new level
of belief about the variable. For example, the variable of
interest is a quantity 6 at a future time (for example, SST at a
specific location for a given month). Before it is actually
observed, § would be a random variable, and our knowledge
on 0 is a probability distribution, i.e., its probability density
function (PDF) p(#). Without the help of any climate
forecast models, p(f) would simply be the climatological
distribution of # from historical records. Now with a climate
model, a forecast of this variable can be made, and we
denote this forecast as y. Then given this new information y,
the conditional distribution p(f]y) reflects our new belief.
Bayes’ theorem computes p(6]y) as:

poly) =051 m

where p(f) and p(y) are the unconditional distributions of ¢
and y. p(0) is also referred to as the “prior” distribution of 6
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Figure 1. Prior distribution (dashed black) and posterior

distribution (solid black) for the forecast of monthly mean
SST over selected grid (2.5 x 2.5 centered at 0 and 130°W)
of December 1998. The raw forecast (solid gray) distribu-
tion estimated from one EU DEMETER climate model is
also plotted. The vertical dotted line indicates the actual
observation for December 1998. The prior distribution is
estimated from data spanning 1982 to 1999 except 1998.
The histogram of the 19 months is also shown.

(prior to the new information y), and p(f|y) is the
“posterior” distribution of 6 (posterior to y). p(v|f) is
referred to as the likelihood function, and it measures how
closely y is distributed around 6, i.e., in this example, how
skillful the climate model is. The focus of the Bayesian
merging method is to develop the probability models for
p(V0), p(y), and p(f) and to compute the posterior distri-
bution p(6|y). The likelihood function is a key step because
it measures the discrimination of the model forecasts and
thus determines how much information is provided by the
model(s). Here the likelihood function is constructed using
a linear regression model with normal errors.

[8] To help derive the method and illustrate it with prac-
tical applications, we use the following example data set.
Let 0 be the monthly mean SST forecast variable in a 2.5 X
2.5° box centered at 0° and 130°W for December 1998.
This box is within the Nifio-3.4 region. Accurate forecasts of
SST over the equatorial Pacific are essential for skillful
seasonal climate forecasts (Latif et al. [1998], Barnston et
al. [1999], and Landsea and Knaff[2000] among others). The
dynamical climate model forecasts used here are from the
European Union’s DEMETER project [Palmer et al., 2004].
Forecasts starting from August for the seven models are used
here, such that the lead time for the December forecast is
5 months. The observations of monthly mean SST come from
the Reynolds data set [Reynolds and Smith, 1994] and have
been regridded to match the grid of the DEMETER models.

2.2. Selecting the Prior Distribution

[9] As previously mentioned, an obvious choice for the
prior distribution of the sample data set is the climatological
distribution of SST from historical observations for that grid
during December. Figure 1 shows the histogram of 6 for all
Decembers from 1982 to 1999, except 1998. A normal
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distribution is fit to the data as the prior distribution, p(6) ~
Ny, ¢,). 0, and ¢, are the mean and variance of the
distribution, respectively. Other distributions are also pos-
sible: for example, in the study of Coelho et al. [2004],
prediction from an empirical model is used as the prior.

2.3. Modeling the Likelihood Function

[t0] The probability model for the likelihood function
p(¥|0) expresses the probability of the forecast y given the
observed SST 6 and conveys the overall discrimination of
the forecast for different SST realizations (observations).
The likelihood function can be estimated from the historical
performance of the model forecasts based on hindcasts.
Figure 2 illustrates climate model forecasts of December
SST versus observed SST, and later this relationship is used
to construct the likelihood function.

[11] The probability model for the likelihood function can
be developed in a number of ways. For this work, because
there is a set of model ensembles for a single realized SST,
conditional distributions are used to estimate p(y|6) using
the conditional distribution of the ensemble mean given the
observed SST, p(3|6), and the conditional distribution of the
ensembles, given their mean value, p(y[p), as follows:

p(10) = p(1y)p(710) (2)

A linear regression model is used to summarize the
relationship between the model mean forecast and the
observations [Coelho et al., 2003, 2004].

y=a+p80+¢ (3)

where a and [ are the intercept and slope parameters,
respectively. The parameters «v and (3 correspond to the bias
and scaling error in the model. The variable ¢ is the residual
(zero-mean) of the regression and assumed to be normally
distributed, and its variance @, reflects the efficiency of the
linear regression. To estimate v and 3, a weighted linear
regression is used to minimize the variance of € [Coelho et
al., 2003, 2004], and the weights are related to the inverse
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Figure 2. Scatterplot of model forecast of December SST
over selected grid versus the observations. The regression line
is calculated from the forecast mean with differential weights.
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of the ensemble spread. Differential weighting of past
forecasts is required because the ensemble spread is not
constant throughout the forecasts. A forecast with a larger
spread indicates that the mean forecast estimated from the
ensemble has a larger uncertainty and therefore should be
given a smaller weight.

[12] With the linear model, y follows a normal distribution,

p(310) ~ N(a + 60, .) (4)

with mean « + (60 and variance ¢, the variance of the
residuals. Assuming that the ensembles of the current
forecast are normally distributed around the mean with
variance ¢,, the conditional distribution of y given the
ensemble mean can be expressed as:

pOY) ~ N 9) (5)

The current forecast variance @, is assumed independent of
the long-term weighted linear regression error @., resulting
in a likelihood function:

p(y|0) ~ N(a+ 56,9, + ¢.) (6)

[13] We note that Coelho et al. [2003, 2004] regressed y
against 6 directly, which limits the understanding of how the
overall variance in likelihood function (and thus the skill
from the models) balances the spread of the ensembles for
particular forecasts to the efficiency of the forecasts based
on the mean of the ensembles. In equation (6), the variance
in the likelihood function is composed of two sources of
variability, ¢. represents the efficiency of the linear regres-
sion that relates the forecast ensemble mean to the obser-
vation, and ¢, is the spread of the ensemble members
around the mean. The larger ¢. is, the less efficient the
linear regression in explaining the relation between y and 6,
which suggests a less skillful climate model resulting in a
smaller weight when merged with the prior. The variable ¢,
is the variance of the ensembles of the current forecast and
needs to represent accurately the uncertainties in the fore-
cast system. There are two factors that contribute to this
variance. One is the inherent uncertainty related to natural
variability and predictability of the variable. The other
factor is related to the probabilistic resolution of the model
forecast. This “resolution” is associated with the ability of
the model ensemble forecast to separate the forecast distri-
bution from the climatological distribution. For example, if
the distribution of the ensemble members is indistinguish-
able from the climatological distribution, then this ensemble
forecast would have poor resolution. Therefore the infor-
mation provided by this forecast is not very useful statisti-
cally. On the other hand, if all or most of the ensembles are
clustered, resulting in a very different distribution from the
climatological distribution, then the forecast indicates that
there is a high probability that the forecast variable will
evolve away from its climatology. The resolution of a model
forecast depends on many things, including its parameter-
izations, the state of the climate system, and even how the
ensembles are generated. For example, improperly generat-
ed ensemble members can be highly correlated and can
create a clustering with underestimated uncertainties. All of
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these uncertainties are factored into the Bayesian analysis
through the magnitude of ¢, as the ensembles are merged
with the climatology. The larger ¢, is, the more uncertain
the forecast, therefore the less contribution this model
provides. This is particularly important when dealing with
multiple climate models. Models with small ¢, (small
ensemble spread) but low skill will have a large ¢., so the
variance of p(y|f) in equation (6) will still be large.

2.4. Posterior Distribution From Single Model
Ensembles

[14] From Bayes’ theorem, the posterior distribution
p(0y) can be computed and also follows a normal distribu-
tion when the prior distribution and the likelihood function
are both normal distributions [Lee, 1997]. The posterior
distribution is given by:

p(Oy) = p(0y,¢,) ~ N(0y,0,) (7)

with mean 6, and variance ¢, computed using

9 P P P PO
O 0o 0 0 B

2
R 3
(8)

bt ()
0 0 ¢ 0 ¢te.\ B

Note that the posterior distribution is conditioned on the
entire distribution of y, not just the mean y.

[15] Figure 1 shows the computed posterior distribution
of the sample data set using equation (8). For comparison,
an ensemble forecast with a normal distribution fit to the nine
ensemble members is shown as well. The observed SST for
the target month is plotted as the vertical dashed line. In this
case, the posterior distribution is clearly closer to the obser-
vation than either the climatological distribution (the prior
distribution) or the raw forecast. Furthermore, an examina-
tion of equation (8) shows that the posterior distribution has a
smaller variance than the prior ¢,, which indicates that the
posterior uncertainty for 6 is reduced when prior information
is updated with model ensemble forecasts.

2.5. Posterior Distribution From Multimodel Ensembles

[16] If forecasts from multiple climate models are avail-
able, with y; denoting the forecast from model i, then the
likelihood function for the forecast from model i can then be
expressed in exactly the same manner as equation (6). If
these climate models give forecasts with independent errors
(p- and ¢,) and with the normality assumption unchanged
for the likelihood functions for all models, the posterior
distribution is normally distributed as:

P(9|y17)/27~-~7ym) NN(9n1p7(Pmp) (9)

with mean 0, and variance ¢,,, computed using
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Figure 3. Prior distribution (dashed black), posterior
distributions updated with one of the seven DEMETER
climate models forecast (solid gray and thin black), and
posterior distribution updated with all seven models forecast
(solid black) for the forecast of December 1998 monthly
mean SST over selected grid (2.5 x 2.5 centered at 0 and
130°W). The thin black line is the posterior distribution
(single model) shown in Figure 1.

[17] Figure 3 shows the posterior distribution from the
multimodel forecast as well as the posterior distributions
from each single model forecast. In this example, it is
evident that the mean of the posterior distribution merged
from multimodel forecast is closer to the observation than
the mean of any of the posterior distributions updated with
forecast from only a single model. From equation (10), it
can be shown that the variance of the multimodel posterior
distribution is always the smallest in all forecasts, as shown
in Figure 3. Not surprisingly, when useful information from
different model forecasts is gathered, the uncertainty of the
forecast should decrease gradually.

[18] In reality, the climate model errors are not completely
independent; hence the number of independent models m
will be smaller than the actual number of models. Ignoring
the correlation among model errors will underestimate the
uncertainties, and the extent is dependent on the correlation.
To handle cross-model error correlations, a principle com-
ponent analysis (PCA) can be done through an eigen
decomposition of the cross-model error covariance matrix.
This would create an orthogonal basis, i.e., a set of linear
combinations of regressed model forecasts, where each
combination is uncorrelated (independent given the normal-
ity assumption) to others. Then the problem reduces to the
case of independent errors, and the solution can be easily
derived. For the purpose of simplicity, we keep the assump-
tion on model independency in this study.

2.6. Handling of Variables With Nonnormal
Distribution

[19] In our proposed Bayesian merging method, both the
prior and the likelihood function are assumed to follow
normal distributions. Although this makes the mathematical
derivation straightforward and produces a normal posterior
distribution, the assumption may not be satisfied for many
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seasonal prediction variables. This assumption appears valid
for monthly mean SST in the example above, even with a
relatively small sample size. However, the assumption
becomes less suitable for seasonal forecast of precipitation.
Daily precipitation over a small region (for example, a 2.5 X
2.5° grid in the midlatitudes) tends not to follow a normal
distribution nor does monthly precipitation because the
daily distribution tends to have a large mass at zero
precipitation, and both daily and monthly distributions are
positively skewed. Although the general Bayesian concept
for merging information, as expressed by equation (1), still
holds, the mathematical derivation of p(6]y) becomes more
difficult. One potential distributional approach for solving
this problem is to base them on a Gamma probability
distribution, which has been used in Bayesian analyses
[Wood and Rodriguez-Iturbe, 1975].

[20] A more general approach for dealing with nonnor-
mally distributed variables is using the method of equal-
quantile (cumulative probability) transfer to convert a
nonnormal distribution to a normal distribution and vice
versa. This equal-quantile approach has been implemented
in the work of Wood et al. [2002] for a bias correction
scheme for seasonal forecasts and is illustrated in Figure 4.
The thick black lines are the climatological distributions
[PDFs in the upper panels and cumulative density functions
(CDFs) in the bottom panels] labeled as “unconditional.”
The thick black lines in the left panels give the climato-
logical distribution for the variable of interest, for example,
the observed monthly precipitation of May over a region
within the Ohio River basin. The thick black lines in the
right panels are for standard normal distributions. The
dashed lines show how variables from the nonnormal
distributions are transferred to random variables distributed
by a standard normal distribution and vice versa using the
equal-quantile principle. Once the climatological distribu-
tion of the forecast variable is determined, such a transfer
between it and the standard normal is uniquely defined.

[21] The algebraic form of this transfer works as follows.
Given an arbitrary nonnormal variable x and its sample
{x;}i=1. . _n» its CDF or empirical CDF Fx(-) can be obtained
by distribution fitting or ranking. Let () be the standard
normal CDF, then according to the equal-quantile principle
F7(z;) = Fx(x;), the transfer to the standard normal space is
z; = F; '(Fx(x;)). The Bayesian merging is performed using
the standard normal sample {z;} -,y to obtain the posterior
sample {z';};=;. _n(Z is also normal). The inverse transfer is
simply x'; = Fyx '(F(;)). If necessary, the distribution of the
posterior can be fitted from the sample {x';},—;_ -

[22] This transfer allows us to convert nonnormal varia-
bles to normal variates and perform the Bayesian merging
on normal variates to obtain the desired conditional poste-
rior distribution. The resulting posterior distribution is a
normal distribution (shown by the thin black line in the
upper right panel in Figure 4) and is used to estimate the
posterior distribution in the climate forecast variable space.
This procedure provides the needed information to estimate
the posterior distribution and corresponding cumulative in
the transformed normal space, and uses the information to
estimate the corresponding values in the climate variable
space. However, we recognize that the algebraic form of the
posterior cannot be predetermined in many cases but that
regularly applied techniques for fitting distributions to data
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Figure 4. Transfer of a nonnormal distribution to and back from a standard normal distribution. The
thick black lines in the left panels are for the nonnormal distribution (climatology) of the variable of
interest (PDF on the top and CDF at the bottom), and the thick black lines in the right are for the standard
normal. Dashed lines running across show how data values can be transferred back and forth using the
equal-quantile principle. Thin black lines (labeled with “Conditional’’) represent the resulted posterior
distribution in the Bayesian merging and how they are converted back to the variable’s original

climatology space.

can be used. Section 4 will present the application of this
transfer method in Bayesian merging of precipitation fore-
casts and the improvements so obtained.

3. Application of the Bayesian Merging Method
on SST Forecast Over Equatorial Pacific Region

[23] The monthly mean SST forecast over a 2.5 x 2.5°
box within the Nifio-3.4 region for December 1998 is used
as an example of the Bayesian merging method developed
earlier. In this section, the Bayesian merging method is
applied to the SST forecast for all months over the equato-
rial Pacific region. The raw climate model forecasts are
taken from the outputs from the EU DEMETER project
[Palmer et al., 2004]. Each year from 1958 to 2001, four
6-month forecasts were made with multiple climate models,
starting from February, May, August, and November, res-
pectively. Only the forecasts from 1982 to 1999 are used in
this study as all the seven models and SST observations are
available during this period. Following the cross-validation
principle, the multimodel posterior forecast is computed for
each year using parameters estimated from other years. The
climatological forecast is also estimated following the same
principle. The skills of all forecasts (climatological forecast,
climate model raw forecasts, and the multimodel posterior
forecasts) are evaluated in two ways. The expected value of
the forecast is used as a single-valued deterministic forecast
and is evaluated using the root mean square error (RMSE).

The forecast distribution (or more precisely the samples
from the forecast distribution) is used to determine forecast
probabilities and is evaluated using the ranked probability
score (RPS) [Wilks, 2006]. Each grid in the region is treated
independently; the spatial distribution and the temporal
change of the evaluation metrics (RMSE and RPS) help
to illustrate the systematic improvement of forecast skill in
all locations, seasons, and lead times.

[24] Figure 5 shows the RMSE calculated from all August
forecasts. In this case, the expected values of each forecast
distribution are used as a single-valued deterministic fore-
cast, although we do not explicitly call it a mean forecast. In
Figure 5, the nine panels show the RMSE of the climato-
logical forecast (upper left panel), the raw forecasts from
seven models, and the multimodel posterior forecast (lower
right panel). The x axis of each panel is longitude, from
175°E to 82.5°W, and the y axis is time, spanning 6 months
from August to the next January (lead times 0—5 months).
The same plots for the other three forecast periods show
very similar patterns; hence they are not presented here. The
following features are evident in these plots:

[25] 1. The RMSE of deterministic climatological forecast
varies spatially and seasonally. Because the deterministic
climatological forecast predicts the climatological mean, the
forecast for a given month does not depend on the lead time,
and the RMSE of such a forecast is in fact the standard
deviation of the underlying climatological distribution. Over
the study region, the largest variation in SST shows up
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during the wintertime over the central part of the region, as
a result of the El Nifio and Southern Oscillation. Obviously
the climatological forecast is incapable of predicting any
abnormal events.

[26] 2. The climate model raw forecast RMSE generally
grows with lead time over the entire domain. In
the DEMETER project, the models are fully coupled
atmospheric-ocean models. In the coupled mode, drift in
the mean climate states is difficult to avoid, and the general
increase in forecast RMSE with lead time partly reflects this
drift. The rate of error growth varies with location and
model. For example, the error grows faster in the middle
and western part of the domain in forecasts from Max-Planck
Institute (SMPI) and United Kingdom Meteorological Office
models, while the error grows faster in the eastern part of the
domain in the other five models. This might be due to the
coupling strength between the oceanic and atmospheric
models and complex feedbacks within the system.

[27] 3. Among all forecasts, the multimodel posterior
forecast shows the smallest RMSE with values around
0.6—1.2 K, while the single model forecast RMSEs are
always larger than 0.6 K and up to 7 K for the SMPI model
forecast. This is a significant improvement in overall
forecast skill. More importantly, there is no obvious error
growth with lead time across the entire domain for the
multimodel posterior forecast, which suggests that the
improvement is systematic regardless of lead time.

[28] 4. As a result of feature 3, the error patterns in the
climatological forecast and the raw model forecast are not
inherited in the multimodel posterior forecast. This is
particularly important to the El Nifio forecast as seen in
the August forecast. While the climatological forecast
shows the largest error around December in the middle part
of the domain, forecast errors from climate models show
significantly different patterns. For example, most raw
model forecasts show the largest error in the eastern part
of the domain during September, while one model (SMPI)
shows the largest error in the central part of the domain in
January with a value of 7 K. However, in the multimodel
posterior forecast, all aforementioned error patterns disap-
pear, and errors have been reduced to less than 1 K, almost
constant across the domain for all periods.

[20] Figure 6 shows the evaluation of these forecasts in a
probabilistic manner using the Ranked Probability Skill
Score (RPSS). The ranked probability score is essentially
an extension of the Brier score applied to evaluating many
events [Wilks, 2006] and thus considers not only the
location of the mean probabilistic forecast but also the
spread of the probabilistic forecasts. A perfect forecast
would assign all the probability to the single category
corresponding to the event that subsequently occurs, so
RPS = 0. The RPSS for each forecast model can be
computed with respect to a reference forecast. A value of
RPSS of 1 indicates perfect multicategory probabilistic
forecasts, while a value of 0 or less means the forecast is
not superior to the reference forecast. In Figure 6, the RPS
from the multimodel posterior forecast is used as the
reference to calculate RPSS for the climatological forecast
and individual climate model forecasts. Large negative
values of RPSS shown in the plots indicate that the
reference forecast, i.e., the multimodel posterior forecast,
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is significantly better than the prior (climatological forecast)
and any individual model’s raw forecast.

[30] Different climate models have individual strengths in
predicting SST in different regions at different times, as
presented by the RMSE patterns and RPSS pattern from
their forecasts. A good postprocessing technique should
pick up the strengths and combine them together to produce
the best forecast. Figure 7 shows the average contribution of
each model to the multimodel posterior forecast. The
contribution is represented as 6,«2/((py, + ¢.) as indicated by
equation (10). Figure 7 suggests that climate models are
more skillful at short lead times; hence they contribute more
toward the posterior forecast. With the increase in lead time,
the contributions from all models decrease and the contri-
bution from the prior (climatology) dominates. This is
exactly what we want to achieve with the Bayesian merging
method, and Figure 7 clearly illustrates it. Figures 5 and 6
clearly demonstrate that the Bayesian merging method is
capable of producing significantly improved SST seasonal
forecasts by statistically combining climate model raw
forecasts with observed climatology. It removes the biases
in individual model forecast that may vary spatially across
the study region and varies temporally with lead time and
season. The posterior of the multimodel Bayesian merging
approach, as a multimodel forecast model, has the proba-
bility focused on the right place (subsequent observations)
so that the mean forecast error is smaller and the confidence
over the climatological and individual climate model fore-
casts is higher.

4. Application of the Bayesian Merging Method
to Precipitation Forecasting Over Ohio River Basin

[31] The Bayesian merging method is also applied to
monthly precipitation forecasts over the Ohio River basin.
Because of the skewed distribution of monthly precipitation,
the equal-quantile transfer scheme described in section 2.6
is applied. The model setting is exactly the same as in the
SST forecast above, but the target is the May to October
monthly precipitation. As an example, only one 2.5 x 2.5°
grid is considered here, which is centered at 40°N and
82.5°W in the eastern portion of the Ohio River basin. The
precipitation forecasts from the DEMETER models are used
to merge with observed climatology, which is derived from
the high-resolution gridded precipitation data set produced
by the Climate Research Unit at the University of East
Anglia [Mitchell et al., 2003] and is regridded to match the
DEMETER model grid. All nonnormal distributions are
transferred to the standard normal distributional space
before applying the Bayesian merging method. After the
Bayesian merging, the posterior distribution of the precip-
itation forecast is transferred back to the precipitation space.
These forecasts are cross validated in exactly the same way
as in the SST forecast.

[32] Figure 8 presents the time series of May monthly
precipitation for the 19-year period from the different
forecasts: the climatological forecast, seven climate model
forecasts, and the multimodel posterior forecast. May is the
first month of the 6-month forecast initialized from 1 May.
The expected value of each forecast distribution is used in
the deterministic forecast verification. For the 19 Mays, the
RMSE:s of the seven climate model forecasts range between

8 of 13



D10102

LUO ET AL.: BAYESIAN SEASONAL HYDROLOGIC PREDICTIONS
RPSS of AUG SST Forecast

D10102

CRFC Raw Forecast
180 160140W120W100W
SCWF Raw Forecast

180 160W 140W120W100W

o= - el ~. petetd [T S CG

lllllllllllll -

//////

|||||||

OW 140W 120W 100W

Iy

||||||||||||||||||||||||

CNRM Raw Forecast
SCNR Raw Forecast
UKMO Raw Forecast

180 160W 140W 120W 100W

180 160W 140W 120W 100W

180 16

P

|||||||||

SMPI Raw Forecast

Climatological Forecast
80 160W 140W120W 100W

180 160W140W120W100W
LODY Raw Forecast

1

from the seven climate model forecast and the climatology. This is for all the forecasts starting in August.
9 of 13

Figure 6. Variation of average RPSS with lead time and location from climatological forecast and raw
forecast by seven DEMETER climate models. The reference RPS is the multimodel posterior forecast



D10102

Average Contribution of Each Model in the Merging
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Figure 8. Multimodel posterior forecast (solid black line) and observed (gray bars) precipitation for all
the May at the selected grid with the Ohio River basin, plotted relative to the climatological mean as
indicated by the horizontal line. The observations are obtained from the CRU data set and regridded to
match the climate model grid. The ensemble mean of each climate model forecast is plotted as solid gray
lines. The dashed black line is the average of all model means. The forecasts are the first month of each

6-month forecast starting from 1 May.

0.94 and 1.49 mm/day, while the RMSE of the multimodel
posterior forecast model is about 0.89 mm/day. Although
the merged forecast is not always the best, the forecast error
has been reduced and skill has been obtained. When
evaluated as a probabilistic forecast, the multimodel poste-
rior also shows higher forecast skills represented by a
smaller RPS. The average RPS of the climatological fore-
cast and the multimodel posterior forecast is 0.88 and 0.64,
respectively. The average RPS of the climate model raw
forecasts range between 0.66 and 1.15. For comparison, we
also show the simple average of the multiple model fore-
casts in Figure 8, and it is very close to the multimodel
posterior forecast. The simple averaging suggests equal
weights for the seven models, so the multimodel posterior
forecast should be no worse than the simple average
assuming that a model receiving a higher weight reflects
higher model skill. In this case, the simple average is the
multimodel posterior mean with an RMSE of 0.9 mm/day.

[33] Figure 8 shows the 1-month ahead forecast. The
mean of the multimodel posterior distribution differs from
the climatological forecast, and the multimodel posterior
distribution is also different from the climatological distri-
bution, which have different values of RPS. When using the
climatological forecast as the reference forecast, the RPSS
of the multimodel posterior forecast is 0.26. However, when
the lead time increases, the multimodel posterior distribu-
tion is not significantly different from the climatological
distribution, indicating that the dynamical climate model
forecasts have little skill in predicting precipitation over this
region beyond 1 month. Luo and Wood [2006] showed that
the NCEP Climate Forecast System has no potential pre-
dictability of monthly precipitation at this spatial scale with

lead times longer than 1 month, and the results above show
this is true for the DEMETER project models. Naturally,
this lack of potential predictability results in unskillful
forecasts. In our multimodel approach, the lack of skill is
automatically taken into account by the Bayesian merging
method in the likelihood function (smaller 5 and large ¢,),
so the contribution from the (unskillful) climate models to
the posterior distribution is tiny during the Bayesian update.
The posterior distribution therefore is not significantly
different from the prior distribution, i.e., the climatological
distribution.

5. Discussion and Conclusions

[34] The value of seasonal climate forecasts has been
increasingly recognized over the last decade or so, and
many statistical models along with dynamical models have
been developed and used in seasonal forecasting. Under-
standing the predictive skill of the individual models,
classes of models (statistical and dynamical), and the best
method for applying their forecasts has been a challenge to
the forecast community. In this paper, we develop a multi-
model forecast system based on combining competing
forecasts using a Bayesian merging approach. It was shown
that such postprocessing of seasonal climate forecasts to
produce a merged forecast achieves better skill than any
individual forecast model. The proposed approach develops
the likelihood function using linear regressions of observa-
tions and mean ensemble hindcasts (historical forecasts).
The regressions effectively remove biases in the model
forecasts. By quantifying the model skills with regression
error variances as well as the ensemble spread and combining
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this with the climatological distribution of observations that
offers a prior forecast, the Bayesian merging approach
extracts useful information from each source to produce the
minimum variance posterior forecast. The method has been
tested using forecasts from seven climate forecast models
from the EU DEMETER project, first, for SST forecasts over
the Equatorial Pacific region and, second, for monthly
precipitation for a grid cell within the Ohio River basin.
Results show that the posterior forecast using the multimodel
forecast has the lowest RMSE and lowest RPS. One inter-
esting side bar from the Bayesian approach is the observation
that forecasts based on the prior climatological distribution
was more skillful in the eastern portion of the domain at
longer lead times than for individual model forecasts, which
is not true for the multimodel Bayesian forecasts.

[35] It is necessary to understand that the multimodel
posterior forecast provides the “expected” best (i.e., small-
est RMSE) forecast and will therefore perform the best over
many forecast cycles. For specific forecasts, one dynamic
model might happen to give a perfect forecast, while its past
performance might provide little evidence for us to trust its
current forecast. Therefore in evaluating the Bayesian
framework, both the past performance and the current
forecast are important. The sample size in estimating the
coefficients in the linear model, i.e., the number of forecasts
used in the regression, also has an impact on the Bayesian
merging method in that a large sample size (long set of
hindcasts) will provide a more accurate estimate of the
likelihood function. Therefore a long-term hindcast data set
with the same dynamic climate model is necessary in
developing better forecast systems.

[36] We also propose a simple method to extend the
application of the Bayesian merging method to seasonal
hydrological predictions, including forecasting of monthly
precipitations in the midlatitudes. In applying the Bayesian
approach to seasonal hydrological predictions, specifically
forecasting of monthly precipitations in the midlatitudes, the
challenges include the skewed distributions of the forecast
variable (both in climatological distribution and forecast
ensemble), which was overcome with the proposed equal-
quantile transfer method to convert all skewed distributions
to normal (nonskewed) distributions. The example shown
in this study illustrates the potential of using the Bayesian
merging method in seasonal hydrological predictions. The
posterior forecast of monthly precipitation for the Ohio
River basin grid from multiple models is not significantly
better than the simple average of multimodel forecast,
which results from uniform predictive skill among the
models. The posterior is not significantly different from
the prior climatological distribution, showing the lack of
predictive skill by the dynamical models for midlatitude
monthly precipitation at the scales studied.

[37] Another attractive feature of the Bayesian merging
method is that the spatial and temporal scale of the variable
0 and the model forecast y are not required to be the same.
Thus 6 may represent precipitation over a small basin, and y
may represent a forecast made at the seasonal climate model
grid scale overlying the basin. Thus our Bayesian approach
offers an effective way to statistically downscale informa-
tion from large scales, which normally comes from climate
model forecasts, to smaller scales that are suitable for
hydrological applications. L. Luo and E.F. Wood (Seasonal
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hydrological prediction with the VIC hydrologic model for
the Ohio River basin, in preparation for submission to
Journal of Hydrometeorology, 2007) implemented this
method in their seasonal hydrological ensemble prediction
system and showed skillful seasonal forecasts of soil mois-
ture and streamflow over the Ohio River basin.

[38] We expect that the proposed Bayesian merging
method can be further improved when the dependency
among multiple climate models are handled more carefully.
For simplicity, we assume that the errors from the seven
DEMETER models are independent, but indeed they are
not. A principle component analysis (not shown here) on the
monthly precipitation forecast errors from these models
shows that the first three eigenvectors can explain about
58, 17, and 11% of the total variance; therefore the effective
number of independent models is less than seven. Not
considering correlations among model errors in the multi-
model Bayesian merging results in overweighting the cli-
mate model forecasts and underweighting the climatology
(prior) distribution. When the dynamical climate models are
not very skillful, this leads to poorer forecast performance.
Approaches for handling such correlated model forecasts
are available; for example, approaches using multivariate
normals within a Bayesian framework can be found in the
work of Zellner [1971] and Stephenson et al. [2005].

[39] The proposed Bayesian merging method appears to
have great potential in postprocessing multimodel ensem-
ble forecasts, as demonstrated using both seasonal tropical
SST forecasts and seasonal precipitation forecasts. The
proposed approach extends the super-ensemble approach
of Krishnamurti et al. [2000] by considering model weights
dependent on model skill and offers a consistent approach
when the model forecasts are combined with climatology. A
straightforward extension to the approach is the merging of
dynamical and statistical climate model forecasts, with
forecasts based on climatology, and handling the various
spatial forecast scales offered by the suite of models being
merged. Such a multimodel Bayesian forecast would provide
improved deterministic and probabilistic forecasts for users
and decision makers from what already exists.
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